Hyperspectral Anomaly Detection Using Deep Learning: A Review
نویسندگان
چکیده
Hyperspectral image-anomaly detection (HSI-AD) has become one of the research hotspots in field remote sensing. Because HSI’s features integrating image and spectrum provide a considerable data basis for abnormal object detection, HSI-AD huge application potential HSI analysis. It is difficult to effectively extract large number nonlinear contained using traditional machine learning methods, deep incomparable advantages extraction features. Therefore, been widely used shown excellent performance. This review systematically summarizes related reference based on classifies corresponding methods into performance comparisons. Specifically, we first introduce characteristics challenges faced by dealing with these problems. Then, classify HSI-AD. Finally, method compared several mainstream sets, existing are summarized. The main purpose this article give more comprehensive overview future work.
منابع مشابه
3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملModeling Representation of Videos for Anomaly Detection using Deep Learning: A Review
This review article surveys the current progresses made toward video-based anomaly detection. We address the most fundamental aspect for video anomaly detection, that is, video feature representation. Much research works have been done in finding the right representation to perform anomaly detection in video streams accurately with an acceptable false alarm rate. However, this is very challengi...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملImproving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2022
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs14091973